

Basic Mathematics

Trigonometry 1

R Horan & M Lavelle

The aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic understanding of some trigonometric functions.

 $Copyright © 2004 \ rhoran@plymouth.ac.uk\,, mlavelle@plymouth.ac.uk$

Last Revision Date: March 4, 2005

Version 1.0

Table of Contents

- 1. Trigonometry 1 (Introduction)
- 2. Using the Sine Function
- 3. Using the Cosine Function
- 4. Using the Tangent Function
- 5. Quiz on Trigonometric Functions Solutions to Exercises Solutions to Quizzes

1. Trigonometry (Introduction)

In the right angled triangle shown in **diagram 1**, O is the side *opposite* the angle θ , A is the side *adjacent* to the angle θ and H, the side opposite the right angle, is the *hypotenuse* of the triangle. The three trigonometric functions dealt with in this package are the *sine*, *cosine* and *tangent* functions:

One useful observation is the following relationship between the three functions:

$$\frac{\sin\theta}{\cos\theta} = \frac{O/H}{A/H} = \frac{O}{A} = \tan\theta.$$

2. Using the Sine Function

Example 1

Find the length of the side marked x in **diagram 2**.

4

Example 3

Use the sine function to find z from **diagram 4**. Solution

Using the sine function again:

$$\sin 35^{\circ} = \frac{O}{H} = \frac{6.5}{z}$$

. $z \times \sin 35^{\circ} = z \times 0.574 = 6.5$
 $z = \frac{6.5}{0.574} = 11.3 \text{ cm}$

Diagram 4

EXERCISE 1. In the exercises below, two of the three values of x, z, θ , referring to **diagram 5**, are given. Find the value of the missing one. (Click on the green letters for solutions.)

(a)
$$x = 5, z = 10$$
, (b) $x = 4, \theta = 47^{\circ}$,

(c) $x = 10, \theta = 50^{\circ}$.

Diagram 5

3. Using the Cosine Function

Example 4

Use the cosine function to find the value of y in **diagram 6**. Solution

$$\cos 30^{\circ} = \frac{A}{H} = \frac{y}{15}$$

$$\therefore 15 \times \cos 30^{\circ} = 15 \times 0.866 = y$$
i.e. $y = 13.0$ cm
$$y \text{ cm}$$
Diagram 6

Example 5

Use the cosine function to find the value of z in diagram 7.

EXERCISE 2. In the exercises below, two of the three values of y, z, θ , referring to **diagram 8**, are given. Find the value of the missing one. (Click on the green letters for solutions.)

Quiz Referring to **diagram 9**, which is the value of y?

Section 4: Using the Tangent Function

4. Using the Tangent Function

Example 6

Use the tangent function to find the value of y in **diagram 10**. Solution

$$\tan 60^\circ = \frac{O}{A} = \frac{y}{5}$$

$$\therefore 5 \times \tan 60^\circ = 5 \times 1.732 = y$$
i.e. $y = 8.7$ cm
Diagram 10

Example 7

. .

In diagram 11, use the tangent function to find the value of x. Solution 0 17 rem

$$\tan 40^\circ = \frac{O}{A} = \frac{11}{x}$$

 $x \times \tan 40^\circ = x \times 0.839 = 17$
i.e. $x = \frac{17}{0.839} = 20.3$
Diagram 11

Section 4: Using the Tangent Function

EXERCISE 3. In the exercises below, two of the three values of x, y, θ , referring to **diagram 12**, are given. Find the value of the missing one. (Click on the green letters for solutions.)

Quiz Referring to **diagram 13**, which is the value of y?

Section 5: Quiz on Trigonometric Functions

5. Quiz on Trigonometric Functions

The following questions all refer to **diagram 14**.

Diagram 14

Begin Quiz

- 1. If y = 13 cm and z = 22 cm, find θ . (a) 18°, (b) 43° (c) 35°, (d) 36°.
- **2.** If y = 30 cm and $\theta = 25^{\circ}$, find x.
 - (a) $69 \,\mathrm{cm}$, (b) $64 \,\mathrm{cm}$, (c) $38 \,\mathrm{cm}$, (d) $16 \,\mathrm{cm}$.
- **3.** If x = 15 cm and $\theta = 25^{\circ}$, find z.

(a) 24 cm, (b) 17 cm, (c) 25 cm, (d) 14 cm.

End Quiz

Solutions to Exercises

Solutions to Exercises

Exercise 1(a)

To find the value of the angle θ in the diagram, we use the sine function:

$$\sin\theta = \frac{5}{10} = 0.5\,.$$

Using a calculator will show that

 $\theta = 30^{\circ}$.

Exercise 1(b)

To find z, the length of the *hypotenuse* of the triangle, we use the sine function:

$$\sin 47^{\circ} = \frac{4}{z}$$
$$\therefore z \times \sin 47^{\circ} = z \times 0.732 = 4$$
$$z = \frac{4}{0.732} = 5.5 \,\mathrm{cm}\,\mathrm{.}$$

where the value of $\sin 47^{\circ} \approx 0.732$ was found using a calculator. Click on the green square to return

Exercise 1(c)

To find z, the length of the $z\,\mathrm{cm}$ $10\,\mathrm{cm}$ *hypotenuse* of the triangle, we use the sine function:

$$\sin 50^{\circ} = \frac{10}{z}$$

$$\therefore z \times \sin 50^{\circ} = z \times 0.766 = 10$$

$$z = \frac{10}{0.766} = 13.1 \,\mathrm{cm} \,.$$

Here the value of $\sin 50^{\circ} \approx 0.766$ was found using a calculator. Click on the green square to return

 50°

4.0

Exercise 2(a)

To find the value of the angle θ in the triangle given here, use the cosine function:

$$\cos\theta = \frac{5}{10} = \frac{1}{2} \,.$$

Using a calculator one finds that

 $\theta=60^\circ$.

Exercise 2(b)

To find z, the length of the *hypotenuse* of the triangle given in the picture, we use the cosine function:

Exercise 2(c)

To find y, the length of the side adjacent to the angle $\theta = 50^{\circ}$ in the triangle given here, we use the cosine function:

 $\therefore 12 \times \cos 50^\circ = 12 \times 0.643 = y$

i.e.
$$y = 7.7 \, \text{cm}$$

Solutions to Exercises

Exercise 3(a)

To find the value of the angle θ of the triangle given in the picture, we use the tangent function:

$$\tan\theta = \frac{5}{10} = 0.5$$

Using a calculator will show that

 $\theta\approx 27^\circ$.

Exercise 3(b)

To find x, the length of the side *opposite* the angle $\theta = 25^{\circ}$ of the triangle given in the picture, we use the tangent function:

i.e.
$$x = 1.9 \,\mathrm{cm}$$

Exercise 3(c)

To find \boldsymbol{y} , the length of the side *adjacent* to the angle $\theta = 25^{\circ}$ of the triangle given in the picture, we use the tangent function:

Solutions to Quizzes

Solutions to Quizzes

Solution to Quiz:

To find y, the length of the *hypotenuse* of the triangle given in the picture, we use the cosine function:

End Quiz

Solutions to Quizzes

Solution to Quiz:

To find \boldsymbol{y} , the length of the side *opposite* to the angle 67° of the triangle given in the picture, we use the tangent function:

End Quiz